Detailed marking instructions for each question

Question		n	Generic scheme	Illustrative scheme	Max mark		
1.			 ¹ Resolve forces in two perpendicular directions 	• $\frac{R}{mg} \cos \theta$ $mg \sin \theta - \mu R = ma$	4		
			• ² Use $F = ma$ with substitution	$F = ma: mg \sin \theta - \mu mg \cos \theta = ma$ • ² $\frac{g}{4} - \frac{g}{8} \times \frac{\sqrt{15}}{4} = a$			
			• ³ Find acceleration on slope	• $a = 1 \cdot 264 [1 \cdot 26]$			
			 ⁴ Use equations of motion to find velocity after 75 metres 	$v^{2} = u^{2} + 2as$ $\bullet^{4} = 2 \times 1 \cdot 264 \times 75$ $v = 13 \cdot 8 \text{ ms}^{-1}$			
Note	Notes:						
• ⁴ A	• ⁴ Accept $13 \cdot 7 \mathrm{ms}^{-1}$						
Commonly Observed Responses:							

Question		Generic scheme	Illustrative scheme	Max mark			
Alternative Solution:							
1.		 ¹ State initial values of kinetic energy and potential energy 	• ¹ At top of the slope $\varepsilon_k + \varepsilon_p$ $0 + m \times g \times 75 \sin \theta$ $= \frac{75mg}{4}$ At bottom of slope $\varepsilon_K = \frac{1}{2}mv^2$	4			
		• ² Calculate work done against friction	• ² $W = \mu N \times 75$ $N = mg \cos \theta$				
		• ³ Use work energy principle with substitution	• $\frac{1}{8} \times \frac{\sqrt{15}mg}{4} \times 75 = \frac{75\sqrt{15}}{32}$ $\frac{1}{2}mv^2 = \frac{75mg}{4} - \frac{75\sqrt{15}}{32}$				
		• ⁴ Value of speed after 75 metres	• $v^{2} = \frac{75g}{2} - \frac{75\sqrt{15}g}{16}$ $v = 13 \cdot 8 \mathrm{ms}^{-1}$				
Not • ³ a	• ³ and • ⁴ can be found using definite integration						
Cor	nmonly	Observed Responses:					

Q	Question		Generic scheme	Illustrative scheme	Max mark
2.	(a)		 Quotient Rule: ¹ correct use of quotient rule with one term correct 	• $f'(x) = \frac{2x^2 \times \frac{1}{x} - \dots}{\dots}$	3
			• ² numerator and denominator correct	• ² $f'(x) = \frac{2x^2 \times \frac{1}{x} - \ln x \times (4x)}{4x^4}$	
			• ³ fully simplify	• ³ $f'(x) = \frac{2x - 4x \ln x}{4x^4} = \frac{1 - 2\ln x}{2x^3}$	
Note	es:				
Com	imonl	y Ob	served Responses:		
Alte	rnati	ve so	lution		
			 Product rule: •¹ express as product and start differentiation correctly 	•1 $f(x) = \frac{1}{2} (\ln x) (x^{-2})$ $f'(x) = \frac{1}{2} (\ln x) (-2x^{-3})$	
			• ² complete differentiation correctly	• ² $f'(x) = \frac{1}{2} (\ln x) (-2x^{-3}) + \frac{1}{2} x^{-2} (\frac{1}{x})$	
			• ³ fully simplify	• ³ $f'(x) = \left(\frac{-\ln x}{x^3}\right) + \frac{1}{2}\left(\frac{1}{x^3}\right) = \frac{1 - 2\ln x}{2x^3}$	
Note	es:				
Com	imonl	y Ob	served Responses:		

Q	Question		Generic scheme	Illustrative scheme	Max mark		
2.	(b)		• ¹ 1 st application of chain rule	• $\frac{dy}{dx} = 2\csc 3x \times 3$	3		
			 ² 2nd application of chain rule ³ Substitution for <i>y</i> and complete solution 	• ² $\frac{dy}{dx} = 2\csc 3x \times 3 \times -\csc 3x \cot 3x$ $\frac{dy}{dx} = -6y \csc e^{2} 3x \cot 3x$ • ³ = -6y \cot 3x $\frac{dy}{dx} + 6y \cot 3x = 0$			
Notes: Accept $\frac{dy}{dx} = -6y \cot 3x$							
dx Commonly Observed Responses:							

Question		n	Generic scheme	Illustrative scheme	Max mark			
3.			 ¹ Evidence of differentiation to give expression for acceleration 	• ¹ $\mathbf{v} = (3\sin 2t)\mathbf{i} + (\cos 2t - 3)\mathbf{j}$ $\mathbf{a} = \frac{d\mathbf{v}}{dt} =\mathbf{i} +\mathbf{j}$	4			
			• ² Correct expression	• ² $\mathbf{a} = \frac{d\mathbf{v}}{dt} = (6\cos 2t)\mathbf{i} - (2\sin 2t)\mathbf{j}$				
			• ³ Substitution to give acceleration in vector form	• ${}^{3}t = \frac{\pi}{6}$: $\mathbf{a} = 6\cos\frac{\pi}{3}\mathbf{i} - 2\sin\frac{\pi}{3}\mathbf{j}$ $[\mathbf{a} = 3\mathbf{i} - \sqrt{3}\mathbf{j}]$				
			• ⁴ Magnitude of acceleration	• $ \mathbf{a} = \sqrt{12} = 2\sqrt{3} \mathrm{ms}^{-2} [3 \cdot 46 \mathrm{ms}^{-2}]$				
Note	es							
• ¹ Ca	• ¹ can be implied in • ² • ⁴ Accept $\sqrt{12} \text{ ms}^{-2}$							
Com	Commonly Observed Responses:							

Question	Generic scheme	Illustrative scheme	Max mark
4.	• ¹ model the situation by considering the forces actir on the beam and the distances of each from the pivot	$\begin{array}{c} \bullet^{1} \\ & x \\ \bullet \\ \bullet \\ 80g \\ & 200g \\ & 40g \end{array}$	4
	• ² state moments about pivot anticlockwise	\bullet^2 80gx	
	• ³ state moments about pivot clockwise, and equate	• ³ 80 gx = 200 g (4 - x) + 40 g (8 - x)	
	• ⁴ solve and interpret answer	$\begin{array}{c} & 320gx = 1120g [320x = 1120] \\ & x = 3 \cdot 5 \end{array}$ The support is positioned $3 \cdot 5 \mathrm{m}$ from	
Notes:		A	
Commonly	Observed Responses:		
Alternative	Solution:		
	 model the situation by considering the forces acting on the beam and the distances of each from the pivot 	$\begin{array}{c} 1 \\ x \\ \hline x \\ 80g \\ 80g \\ 200g \\ 40g \end{array}$	4
	• ² Use vertical equilibrium •	R = 80g + 200g + 40g $R = 320g$	
	• ³ Taking moments about A	³ $320g \times x = 200g \times 4 + 40g \times 8$	
	• ⁴ solve and interpret answer T	$\begin{array}{l} 320x = 800 + 320 \\ x = 3 \cdot 5 \end{array}$ The support is positioned $3 \cdot 5 \mathrm{m}$ from A	
Notes:			
Commonly (Observed Responses:		

Question		Generic scheme	Illustrative scheme	Max mark			
5.		• ¹ Write as a sum of fractions	• ¹ $\frac{A}{x-3} + \frac{Bx+C}{x^2+5}$ $A(x^2+5) + (Bx+c)(x-3) = 3x^2 + 4x + 17$	4			
		 ² Rewrite equation with no denominator 	• ² $A=4$				
		• ³ Calculate two constants	• $^{3} B = -1 \text{ or } C = 1$				
		 ⁴ Calculate final value and rewrite original function as sum of partial fractions 	• $4 \frac{4}{x-3} + \frac{1-x}{x^2+5}$				
Note • ¹ if	Notes: • ¹ if incorrect can only achieve 2 marks						
Com	Commonly Observed Responses:						

Question		n	Generic scheme	Illustrative scheme	Max mark			
6.			• ¹ consider vertical forces	• ¹ Diagram to show forces acting or $F = mg = \mu R$	4			
			• ² consider forces radially	$ \mu R = mg R = mr\omega^2 $				
			 ³ combine equations and substitute for known quantities 	• ³ $\mu mr\omega^2 = mg$ $\mu(3\cdot 5)(4)^2 = g$				
			• ⁴ find the value of the coefficient of friction	• ⁴ $\mu = 0.175$				
Note: • ¹ car	Notes: • ¹ can be implied by • ² or • ³							
Comr A dia	Commonly Observed Responses: A diagram was drawn showing balanced forces. This would not allow for a centripetal force.							

Question		on	Generic scheme	Illustrative scheme	Max mark
7.			• ¹ Use range to find expression for time of flight	$R = u \cos \theta \times t$ $60 = u \cos 28^{\circ} \times t$	5
			• ² use equations of motion with constant acceleration vertically	• $s = ut + \frac{1}{2}at^{2}$ • $u \sin 28^{\circ} - \frac{g}{2}t^{2}$	
			• ³ Rearrange to give expression for <i>t</i> and substitution	• ³ $t = \frac{60}{u\cos 28^{\circ}}$ $0 = u\sin 28^{\circ} \times \frac{60}{u\cos 28^{\circ}} - \frac{g}{2} \left(\frac{60}{u\cos 28^{\circ}}\right)^{2}$	
			• ⁴ process algebra	• $\frac{g}{2} \left(\frac{60}{u\cos 28^\circ}\right)^2 = 60\tan 28^\circ$	
			\bullet ⁵ find initial speed	• ⁵ $u = 26 \cdot 6 \mathrm{ms}^{-1}$	
Note	Notes:				
Com	nmonl	y Obse	erved Responses:		

Question		n	Generic scheme		Illustrative scheme	Max mark	
8.			•1 Find expression for momentum before collision	•1	$0 \cdot 2 \times 6 + 0 \cdot 5 \times 3$	6	
			• ² apply conservation of linear momentum	•2	$0.2 \times 6 + 0.5 \times 3 = 0.5 \times v_{y}$		
			• ³ calculate speed of Y after collision	•3	$v_y = 5 \cdot 4 \mathrm{ms}^{-1}$		
			• ⁴ use Newton's second law to	4	$-mg\sin 30 = ma$		
			calculate deceleration of Y	•	$a = -4 \cdot 9 \mathrm{ms}^{-2}$		
					$-mg \sin 30 = ma$		
			• ⁵ use appropriate equation of motion and substitute	•5	$0^2 = 5 \cdot 4^2 + 2 \times (-4 \cdot 9) \times s$		
			• ⁶ calculate distance travelled before coming to rest and communicate result relative to B	•6	$s = 2.98 \mathrm{m}$ which is 52cm below B		
Note For	Notes For mark • ⁶ conclusion must be stated						
Com	monl	y Ob	served Responses:				

Q	Question		Generic scheme	Illustrative scheme	Max mark			
9.	(a)		 ¹ Find resultant force ² Work done by variable force with substitution ³ Integrate function ⁴ Calculate work done 	• ¹ Resultant force = $(249-50\sqrt{x}) - \mu R$ $= 249-50\sqrt{x} - 0.25 \times 20g)$ $= 200-50\sqrt{x}$ • ² Work done = $\int_{0}^{10} (200-50\sqrt{x}) dx$ • ³ $\left[200x - \frac{100}{3}x^{\frac{3}{2}} \right]_{0}^{10}$ • ⁴ 946 J	4			
Not	es		L		<u> </u>			
Com	nmonl	ly Ob	served Responses:					
	(b)		 ⁵ Work done equated to change in energy with substitution ⁶ Value of speed after 10 metres 	• $\frac{1}{2}(20)v_{10}^{2} - \frac{1}{2}(20)12^{2} = 945 \cdot 9$ • $v_{10} = 15 \cdot 4 \mathrm{ms}^{-1}$				
Note	es		1	1	l			
Com	Commonly Observed Responses:							

Question		on	Generic scheme		Illustrative scheme	Max mark
Alte	e rnati and (b	ve So)	olution: This solution does the	e que	stion in reverse and so cannot be split i	nto (a)
9.	(a) +(b)		• ¹ Find resultant force	• ¹ R (=	esultant force = $249 - 50\sqrt{x} - \mu R$ $= 249 - 50\sqrt{x} - 0.25 \times 20g$ $= 200 - 50\sqrt{x}$	6
			• ² Set up differential equation	•² <i>I</i>	$F = ma: \ 20v \frac{dv}{dx} = (200 - 50\sqrt{x})$	
			$ullet^3$ separate the variables	• 3	$\int v dv = \int (10 - \frac{5}{2}\sqrt{x}) dx$	
			 ⁴ Obtain the general equation for velocity at any time 	• 4	$\frac{v^2}{2} = 10x - \frac{5}{3}x^{\frac{3}{2}} + c$ x = 0, v = 12 \Rightarrow c = 72 $\frac{v^2}{2} = 10x - \frac{5}{3}x^{\frac{3}{2}} + 72$	
			 ⁵ Value of speed after 10 metres 	• ⁵	$v_{10} = 15 \cdot 4 \mathrm{ms}^{-1}$	
			• ⁶ Work done equated to change in energy with substitution	• 6 1/2	$\frac{1}{2}(20)v_{10}^{2} - \frac{1}{2}(20)12^{2} = 945 \cdot 9 \mathrm{J}$	
Not ● ³ ā	Notes: • ³ and • ⁴ can be found using definite integration					
Cor	nmonl	y Ot	served Responses:			

Question		Generic scheme	Illustrative scheme	Max mark			
10.		 Integrate one function and differentiate other Correct choice of functions for the process 	$f(x) = x^{2}$ $g'(x) = \sin 5x$ • ¹ • ² $f'(x) = 2x$ $g(x) = -\frac{1}{5}\cos 5x$	5			
		• ³ Correct expression for integral	• ³ $I = -\frac{x^2}{5}\cos 5x + \frac{2}{5}\int x\cos 5x dx$				
		• ⁴ Second integration by parts	• ⁴ $\int x \cos 5x dx = \frac{x}{5} \sin 5x - \frac{1}{5} \int \sin 5x dx$ $= \frac{x}{5} \sin 5x + \frac{1}{25} \cos 5x dx$				
		• ⁵ Substitution and final answer	• ⁵ $I = \frac{-x^2}{2}\cos 5x + \frac{2}{5}\left(\frac{x}{5}\sin 5x + \frac{1}{25}\cos 5x\right) + c$ $= \left[\left(\frac{2}{125} - \frac{x^2}{5}\right)\cos 5x + \frac{2x}{25}\sin 5x + c\right]$				
Notes: • ⁵ Do not penalise omission of constant							
Com	Commonly Observed Responses:						

Question	Generic scheme	Illustrative scheme	Max mark		
11.	 ¹ Differentiate 3y² and 4 ² Differentiate product ³ Expression for derivative ⁴ Substitute for x and find two 	• ¹ $6y \frac{dy}{dx}$ and 0 • ² $-2xy - x^2 \frac{dy}{dx}$ • ³ $\frac{dy}{dx} = \frac{2xy}{6y - x^2}$ $x = 2 3y^2 - 4y - 4 = 0$	5		
Notes:	 Substitute for x and find two values of y ⁵ Choose correct value for y and substitute x value and y value to obtain gradient. 	$y = -\frac{2}{3}; y = 2$ • ⁵ $\frac{dy}{dx} = \frac{2 \cdot 22}{6 \cdot 2 - 2^2} = 1$			
Commonly Observed Responses:					

Q	uestic	n	Generic scheme	Illustrative scheme	Max mark
12.	(a)		 ¹ Consider body in equilibrium and Hooke's Law 	• $^{1}T = mg: \frac{150e}{0.5} = 0.75g$	2
			• ² Evaluate equilibrium extension	• ² $e = 0.0245 = 2.45 \mathrm{cm}$	
Note	s:				
Comr	nonly	Obse	rved Responses:		
	(b)	(i)	• ³ Apply $F = ma$ vertically	• ³ $mg - T = m\ddot{x}$	3
			• ⁴ Apply Hooke's Law in extension with	• $mg - \frac{150(0 \cdot 0245 + x)}{0 \cdot 5} = m\ddot{x}$	
			substitution	$g - 400(0 \cdot 0245 + x) = \ddot{x}$	
			• ⁵ Complete to prove SHM	• ⁵ $-400x = x$ [SHM with $\omega = 20$]	
Note	s:		<u> </u>	<u> </u>	
Comr	nonly	Obse	rved Responses:		
		(ii)	• ⁶ Use correct equation for speed with substitution	• ⁶ $a = 0.02 \omega = 20 x = 0.015$ $v^2 = \omega^2 (a^2 - x^2) \Longrightarrow v^2 = 400(0.02^2 - 0.015^2)$	2
			• ⁷ Find the value of speed	• ⁷ $v = 0.265 [ms^{-1}]$	
Note	s:			· · · ·	
Comr	nonly	Obse	rved Responses:		
	(c)		• ⁸ Statement about extension that allows tension in the string	• ⁸ 3cm > 2 ⋅ 45 cm so string is not in tension throughout.	1
Note	s:				
Comr	nonly	Obse	rved Responses:		

Question		Generic scheme	Illustrative scheme	
13. (a)		 ¹ Use Newton's law of gravitation and F = ma at earth's surface 	• ${}^{1}mg = \frac{GMm}{R^2} \implies GM = gR^2$	4
		• ² Create second equation for satellite and combine	• ${}^{2}GM = g_{s}(R+h)^{2}$ $g_{s}(R+h)^{2} = gR^{2}$	
		• ³ Interpret condition for gravity	• ³ $g_s = \frac{1}{9}g$ $\frac{1}{9}g(R+h)^2 = gR^2 \Longrightarrow r = 3R$	
			$\frac{1}{9}g(R+h)^2 = gR^2 (R+h)^2 = 9R^2$	
		 ⁴ Find expression for height of satellite 	• ⁴ $R+h=3R$ h=2R	
Notes:				
Commonly	y Obs	served Responses:		
Alternativ	ve so	lution		
		• ¹ Use Newton's inverse square law and $F = ma$ at earth's surface	• $a = \frac{l}{r^2}$: $g = \frac{k}{R^2}$ $k = gR^2$	
		• ² Create second equation for satellite and combine	$\bullet^2 \frac{1}{9}g = \frac{k}{(R+h)^2}$	
		• ³ Interpret condition for gravity	• ³ $\frac{1}{9}g = \frac{gR^2}{(R+h)^2}$	
		 ⁴Find expression for height of satellite 	$\frac{1}{9}g(R+h)^2 = gR^2 (R+h)^2 = 9R^2$ • ⁴ R+h=3R h=2R	
Notes:		1		

Commonly Observed Responses:

Question		on	Generic scheme	Illustrative scheme	Max mark		
13.	(b)		 ⁵ Use Newton's Law of Gravitation and circular motion at surface 	• ⁵ $\frac{GMm}{r^2} = mr\omega^2 \Longrightarrow GM = r^3\omega^2$	3		
			 ⁶ Equate with expression from (a) and substitute for r 	$gR^{2} = r^{3}\omega^{2}$ $gR^{2} = (4R)^{3}\omega^{2}$			
			• ⁷ Complete proof	• ⁷ $\omega^2 = \frac{gR^2}{64R^3} \Rightarrow \omega = \frac{1}{8}\sqrt{\frac{g}{R}}$			
Note	es						
Com	monl	y Obs	erved Responses:				
Alte	rnativ	ve sol	ution				
		,	⁵ Use Newton's inverse square law and circular motion at surface	• ⁵ $g = \frac{k}{R^2}$ $k = gR^2$			
			 ⁶ Equate with expression from (a) and substitute for r 	• ⁶ $a = \frac{k}{(4R)^2} = \omega^2(4R)$			
		,	• ⁷ Complete proof	• ⁷ $\omega^2 = \frac{gR^2}{64R^3} \Rightarrow \omega = \frac{1}{8}\sqrt{\frac{g}{R}}$			
Note	es:	L					
Com	Commonly Observed Responses:						

Qı	Question		Generic scheme	Illustrative scheme	Max mark	
14.	(a)	(i)	 ¹ Comment about i and j as <u>unit</u> vectors 	• ¹ As per Generic Scheme	2	
			 ² Specify i as in direction of East and j as in direction of North 	• ² As per Generic Scheme		
Note	25					
Com	mon	ly Ol	oserved Responses:			
		(ii)	 ³ obtain equations for the velocity of boat A and boat B ⁴ state initial positions and obtain equations for the positions of boat A and boat B at time t 	• ³ $v_A = 10 \sin 60\mathbf{i} + 10 \cos 60\mathbf{j} = 5\sqrt{3}\mathbf{i} + 5\mathbf{j}$ $v_B = -10\sqrt{3} \sin 30\mathbf{i} + 10\sqrt{3} \cos 30\mathbf{j} = -5\sqrt{3}\mathbf{i} + 15\mathbf{j}$ • ⁴ $r_A = 0\mathbf{i}$ and $r_B = 12\mathbf{i} \implies \text{after time } t$ $r_A = 5\sqrt{3}t\mathbf{i} + 5t\mathbf{j}$ $r_B = (12 - 5\sqrt{3}t)\mathbf{i} + 15t\mathbf{j}$	3	
			 ⁵ obtain equation for position of boat A relative to boat B 	• ⁵ $_{A}r_{B} = r_{A} - r_{B}$ $_{A}r_{B} = (5\sqrt{3}t - (12 - 5\sqrt{3}t))\mathbf{i} + (5t - 15t)\mathbf{j}$ $= (10\sqrt{3}t - 12)\mathbf{i} - 10t\mathbf{j}$		
Note	Notes					
Com	mon	ly O	oserved Responses:			

Question		on	Generic scheme	Illustrative scheme	Max mark		
14.	(b)	• ⁶ obtain expression for the magnitude relative distance between boats A and B		• $ _{A}r_{B} = \sqrt{(10\sqrt{3}t - 12)^{2} + (10t)^{2}}$	5		
			• ⁷ Equate distance expression to 7km	• ⁷ $\frac{400t^2 - 240\sqrt{3}t + 144 < 49}{400t^2 - 240\sqrt{3}t + 144 = 49}$			
			 ⁸ Obtain quadratic equation in standard form 	• ⁸ $400t^2 - 240\sqrt{3}t + 95 = 0$			
			• ⁹ Solve quadratic equation to find values for <i>t</i>	• $t = \frac{240\sqrt{3} \pm \sqrt{20800}}{800}$ t = 0.339 hours [20.4 mins] t = 0.700 hours [42.0 mins]			
			 ¹⁰ State time interval rounded to nearest minute 	• ¹⁰ 22 minutes			
Note	Notes						
Com	Commonly Observed Responses:						

Q	Question		Generic scheme	Illustrative scheme	Max mark	
15.	(a)		• ¹ Statement of the total force	$\bullet^1 \frac{P}{v} - \frac{mkv^2}{6}$	2	
			• ² Use of $F = ma$ with use of $mv \frac{dv}{dx}$	• ² $mv \frac{dv}{dx} = \frac{6P - mkv^3}{6v}$		
Note	es.					
Com	mon	y Ob	served Responses:			
	(b)		 ³ Separation of variables to prepare for integration ⁴ explicit term for x 	• ³ $\int dx = \int \frac{6mv^2}{6P - mkv^3} dv$ • ⁴ $x = \frac{-2}{k} \ln \left 6P - mkv^3 \right + c$	4	
			 ⁵ Substitute initial values to find c or use definite integral 	$0 = \frac{-2}{k}\ln(6P) + c$ $c = \frac{2}{k}\ln 6P$		
			• ⁶ Expression for the displacement	• ⁶ $x = \frac{2}{k} \ln 6P - \frac{2}{k} \ln \left(\frac{6P - mkv^3}{k} \right)$ $\left[x = \frac{2}{k} \ln \left \frac{6P}{6P - mkv^3} \right \right]$		
Note	Notes:					
Com	imon	y Ob	served Responses:			

Q	Question		Generic scheme	Illustrative scheme	Max mark		
16.			• ¹ identify $\int Pdt$ and its integration	• $\int \frac{-1}{t} dt = -\ln t$	5		
			• ² integrating factor	• $e^{-\ln t} = e^{\ln \frac{1}{t}} = \frac{1}{t}$			
			• ³ multiply through by IF and state derivative	• $\frac{1}{t} \frac{dv}{dt} - \frac{v}{t^2} = \frac{3}{t}$ $\frac{d}{dt} \left(\frac{v}{t}\right) = \frac{3}{t}$			
			• ⁴ integrate to give expression for v	• ⁴ $\frac{v}{t} = 3\ln t + c$ [$v = 3t\ln t + ct$]			
			 ⁵ use initial conditions to find c and state full expression for velocity 	• ⁵ $c = 5 \Longrightarrow v = 3t \ln t + 5t$			
Note	Notes • ⁴ must include constant						
• ⁵ m	• ⁵ must be expression for v and not $\frac{v}{t}$.						
Com	Commonly Observed Responses:						

Question		Generic scheme	Illustrative scheme	Max mark				
17. (a)		• ¹ resolve forces perpendicular to the slope	• ¹ $R = mg\cos\theta$ $[R = 12g\frac{\sqrt{7}}{4} = 3\sqrt{7}g]$	5				
		• ² resolve forces parallel to the slope	• ² $ma = mg\sin\theta - \mu R$					
		• ³ combine equations to give an expression for the acceleration.	• ³ $a = g \sin \theta - \mu g \cos \theta$ $a = \frac{(3 - \sqrt{7}\mu)g}{4}$					
		 ⁴ use appropriate equation of motion with substitution. 	• ⁴ $v^2 = u^2 + 2as$ 100 = 25 + $\frac{2(3 - \sqrt{7}\mu)gs}{4}$					
		 ⁵ algebraic manipulation to give the required expression. 	• $5\frac{(3-\sqrt{7}\mu)gs}{2} = 75$ $s = \frac{150}{(3-\sqrt{7}\mu)g}$					
Notes	Notes							
Commo	nly Ot	oserved Responses:						

Question		on	Generic scheme	Illustrative scheme	Max mark
17.	(b)		• ⁶ consider motion of the body down slope with resisting forces	• ⁶ $ma = mg \sin \theta - \mu R - 260 \cos \theta$	6
			 ⁷ consider equilibrium perpendicular to slope 	• ⁷ $R = 260\sin\theta + 12g\cos\theta$	
			• ⁸ combine equations and substitute in values to get an expression for acceleration	• ⁸ $12a = 12g \sin \theta - \mu(260 \sin \theta + 12g \cos \theta) - 260 \cos \theta$ $12a = -83 \cdot 8 - 273 \mu$ $a = -6 \cdot 98 - 22 \cdot 75 \mu$	
			 ⁹ substitute expression for acceleration into equation of motion with original distance now halved 	• 9 $v^2 = u^2 + 2as$ $0 = 100 + 2(-6.98 - 22.75\mu) \times \frac{75}{(3 - \sqrt{7}\mu)g}$	
			 ¹⁰ Simplify equation 	• ¹⁰ $-100(3-\sqrt{7}\mu)g = 150(-6.98-22.75\mu)$	
			• ¹¹ complete solution to find value of μ	• ¹¹ $\mu = 0.32$	
Note	s				
Com	monl	y Obs	served Responses:		

Question		n	Generic scheme	Illustrative scheme	Max mark
Alternative Solution:		olution:	·		
17.	(b)		 ¹ Statement of force acting down slope 	• ¹ $F = (mg\sin\theta - \mu mg\cos\theta)$	6
			 ² Change in kinetic energy 	• ² $\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = 450$	
			• ³ use of work/energy principle	• ³ $(mg\sin\theta - \mu mg\cos\theta) \times s = 450$	
			 ⁴ substitution of exact values 	$450 = (9g - 3\sqrt{7}\mu g) \times s$ • $^{4}s = \frac{450}{(9 - 3\sqrt{7}\mu)g} = \frac{150}{g(3 - \sqrt{7}\mu)g}$	
			 ⁵ algebraic manipulation to give required answer 	$(3 - \sqrt{7}\mu)gs = 150$ • $s = \frac{150}{(3 - \sqrt{7}\mu)g}$	
			 ⁶ Resolve forces acting down the slope 	• ⁶ $(mg\sin\theta - 260\cos\theta - \mu R)$	
			• ⁷ Equilibrium of forces perpendicular to slope to give expression for <i>R</i> with substitution	• ⁷ $R = 260\sin\theta + mg\cos\theta$ $(mg\sin\theta - 260\cos\theta - 260\mu\sin\theta - \mu mg\cos\theta) \times \frac{1}{2}s = -600$	
			 ⁸ set up equation from the work/energy principle 	• ⁸ (mg sin θ - 260 cos θ - μR) × $\frac{1}{2}s = \frac{1}{2}mv^2 - \frac{1}{2}mu^2$	

Questior	n Generic scheme	Illustrative scheme	Max mark
Alternative Solution continued:			
17. (b)	• ⁹ substitute in expression for displacement down slope	• 9 $(-83 \cdot 8 - 273\mu) \times \frac{75}{(3 - \sqrt{7}\mu)g} = -600$	
	• ¹⁰ Process algebra	• ¹⁰ 75(-83·8-273 μ) = -600(3- $\sqrt{7}\mu$)g	
	• ¹¹ calculate value of μ	• ¹¹ $\mu = 0.32$	
Notes			
Commonly Observed Responses:			

[END OF MARKING INSTRUCTIONS]